Insights on Fast Kernel Density Estimation Algorithms

نویسندگان

  • Dustin Lang
  • Mike Klaas
  • Nando de Freitas
چکیده

We present results of experiments testing the Fast Gauss Transform, Improved Fast Gauss Transform, and Dual-Tree methods (using kd-tree and Anchors Hierarchy data structures) for fast Kernel Density Estimation (KDE). We examine the performance of these methods with respect to data set size, dimension, allowable error, and data set structure (“clumpiness”), measured in terms of CPU time and memory usage. This is the first multi-method comparison in the literature. The results are striking, challenging several claims that are commonly made about these methods. The results will be useful for researchers considering fast methods for KDE problems. We also provide theoretical results that improve the bounds on dual tree methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Kernel Density Independent Component Analysis

We develop a super-fast kernel density estimation algorithm (FastKDE) and based on this a fast kernel independent component analysis algorithm (KDICA). FastKDE calculates the kernel density estimator exactly and its computation only requires sorting n numbers plus roughly 2n evaluations of the exponential function, where n is the sample size. KDICA converges as quickly as parametric ICA algorit...

متن کامل

Empirical Testing of Fast Kernel Density Estimation Algorithms

We present results of experiments testing the Fast Gauss Transform, Improved Fast Gauss Transform, and Dual-Tree methods (using kd-tree and Anchors Hierarchy data structures) for fast Kernel Density Estimation (KDE). We examine the performance of these methods with respect to data set size, dimension, allowable error, and data set structure (“clumpiness”), measured in terms of CPU time and memo...

متن کامل

Fast Algorithms for the Solution of Stochastic Partial Differential Equations

Title of dissertation: FAST ALGORITHMS FOR THE SOLUTION OF STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS Christopher W. Miller, Doctor of Philosophy, 2012 Dissertation directed by: Professor Howard Elman Department of Computer Science Institute for Advanced Computer Studies We explore the performance of several algorithms for the solution of stochastic partial differential equations including the s...

متن کامل

Comparison of the Gamma kernel and the orthogonal series methods of density estimation

The standard kernel density estimator suffers from a boundary bias issue for probability density function of distributions on the positive real line. The Gamma kernel estimators and orthogonal series estimators are two alternatives which are free of boundary bias. In this paper, a simulation study is conducted to compare small-sample performance of the Gamma kernel estimators and the orthog...

متن کامل

Efficient Kernel Density Estimation Using the Fast Gauss Transform with Applications to Color Modeling and Tracking

Many vision algorithms depend on the estimation of a probability density function from observations. Kernel density estimation techniques are quite general and powerful methods for this problem, but have a significant disadvantage in that they are computationally intensive. In this paper, we explore the use of kernel density estimation with the fast Gauss transform (FGT) for problems in vision....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004